13,658 research outputs found

    APM z>4 QSO Survey: Distribution and Evolution of High Column Density HI Absorbers

    Get PDF
    Eleven candidate damped Lya absorption systems were identified in 27 spectra of the quasars from the APM z>4 survey covering the redshift range 2.83.5). High resolution echelle spectra (0.8A FWHM) have been obtained for three quasars, including 2 of the highest redshift objects in the survey. Two damped systems have confirmed HI column densities of N(HI) >= 10^20.3 atoms cm^-2, with a third falling just below this threshold. We have discovered the highest redshift damped Lya absorber known at z=4.383 in QSO BR1202-0725. The APM QSOs provide a substantial increase in the redshift path available for damped surveys for z>3. We combine this high redshift sample with other quasar samples covering the redshift range 0.008 < z < 4.7 to study the redshift evolution and the column density distribution function for absorbers with log N(HI)>=17.2. In the HI column density distribution f(N)=kN^-beta we find evidence for breaks in the power law, flattening for 17.221.2. The column density distribution function for the data with log N(HI)>=20.3 is better fit with the form f(N)=(f*/N*)(N/N*)^-beta exp(-N/N*). Significant redshift evolution in the number density per unit redshift is evident in the higher column density systems with an apparent decline in N(z) for z>3.5.Comment: To appear in MNRAS. Latex file (10 pages of text) plus 14 separate postscript figure files. Requires mn.sty. Postscript version with figures embedded is available at http://www.ociw.edu/~lisa/publications.htm

    Evolution of Neutral Gas at High Redshift -- Implications for the Epoch of Galaxy Formation

    Get PDF
    Though observationally rare, damped Lya absorption systems dominate the mass density of neutral gas in the Universe. Eleven high redshift damped Lya systems covering 2.84 QSO Survey, extending these absorption system surveys to the highest redshifts currently possible. Combining our new data set with previous surveys we find that the cosmological mass density in neutral gas, omega_g, does not rise as steeply prior to z~2 as indicated by previous studies. There is evidence in the observed omega_g for a flattening at z~2 and a possible turnover at z~3. When combined with the decline at z>3.5 in number density per unit redshift of damped systems with column densities log N(HI)>21 atoms cm^-2, these results point to an epoch at z>3 prior to which the highest column density damped systems are still forming. We find that over the redshift range 2<z<4 the total mass in neutral gas is marginally comparable with the total visible mass in stars in present day galaxies. However, if one considers the total mass visible in stellar disks alone, ie excluding galactic bulges, the two values are comparable. We are observing a mass of neutral gas comparable to the mass of visible disk stars. Lanzetta, Wolfe & Turnshek (1995) found that omega_g(z~3.5) was twice omega_g(z~2), implying a much larger amount of star formation must have taken place between z=3.5 and z=2 than is indicated by metallicity studies. This created a `cosmic G-dwarf problem'. The more gradual evolution of omega_g we find alleviates this. These results have profound implications for theories of galaxy formation.Comment: To appear in MNRAS. Latex file (4 pages of text) plus 3 separate postscript figure files. Requires mn.sty. Postscript version with figures embedded is available at http://www.ociw.edu/~lisa/publications.htm

    Radio Observations of Infrared Luminous High Redshift QSOs

    Get PDF
    We present Very Large Array (VLA) observations at 1.4 GHz and 5 GHz of a sample of 12 Quasi-stellar Objects (QSOs) at z = 3.99 to 4.46. The sources were selected as the brightest sources at 250 GHz from the recent survey of Omont et al. (2001). We detect seven sources at 1.4 GHz with flux densities, S_{1.4} > 50 microJy. These centimeter (cm) wavelength observations imply that the millimeter (mm) emission is most likely thermal dust emission. The radio-through-optical spectral energy distributions for these sources are within the broad range defined by lower redshift, lower optical luminosity QSOs. For two sources the radio continuum luminosities and morphologies indicate steep spectrum, radio loud emission from a jet-driven radio source. For the remaining 10 sources the 1.4 GHz flux densities, or limits, are consistent with those expected for active star forming galaxies. If the radio emission is powered by star formation in these systems, then the implied star formation rates are of order 1e3 M_solar/year. We discuss the angular sizes and spatial distributions of the radio emitting regions, and we consider briefly these results in the context of co-eval black hole and stellar bulge formation in galaxies.Comment: to appear in the A
    • …
    corecore